skip to main content


Search for: All records

Creators/Authors contains: "Huber, Brian T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted. 
    more » « less
  2. Abstract

    A 101 m thick stratigraphically complete late Coniacian–early Santonian (ca89 to 83 Ma) sedimentary sequence drilled in Tanzania (Tanzania Drilling Project Site 39) allows, for the first time, examination of the planktonic foraminiferal biostratigraphy and evolution, the depositional history, and geochemical patterns of the subtropical–tropical Indian Ocean region. The sedimentary succession corresponds to an outer shelf to upper slope setting and is dominated by calcareous clayey siltstones and mudstones. The occurrences of Tethyan marker species enable application of the tropical biozonation including identification of theDicarinella concavataandDicarinella asymetricaZones. In addition, Tanzania Drilling Project Site 39 is proposed as reference section for the Coniacian/Santonian boundary in the Indian Ocean with the boundary placed at the lowest occurrence ofGlobotruncana linneianain agreement with the Global Stratotype Section and Point (Spain). The record at Tanzania Drilling Project Site 39 provides a unique opportunity to document the planktonic foraminiferal evolution in a subtropical marginal sea environment during a key period in their evolutionary history characterized by a major radiation among the deep‐dwelling taxa. Combined documentation of lithological and geochemical changes (%CaCO3, %Corg,δ13Ccarbandδ18Ocarb) reveals a setting influenced by continental‐derived nutrients in theDicarinella concavataZone (Lindi Formation) with a change to higher carbonate production and reduced surface water primary productivity in the overlyingDicarinella asymetricaZone (Nangurukuru Formation). Planktonic foraminiferal assemblage changes mirror the depositional and geochemical trends and indicate a progressive shift from a more eutrophic to a more oligotrophic regime through time. At the local scale, this palaeoceanographic scenario is consistent with the deepening of coastal Tanzania in response to the Late Cretaceous marine transgression registered in south‐east Tanzania. Because the tectonic evolution and sea‐level rise along the East Africa continental margin is superimposed on the Coniacian–Campanian global long‐term sea‐level high, this study hypothesizes that the epicontinental invasion of blue waters may have favoured radiation among deep‐dwelling taxa.

     
    more » « less